

GUAIANOLIDES FROM *BACCHARIS SALICINA*

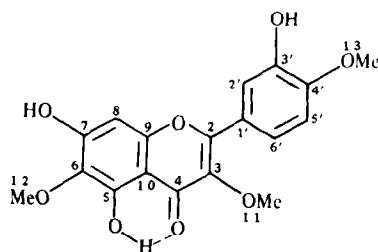
FELIX J. PARODI and NIKOLAUS H. FISCHER*

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, U.S.A.

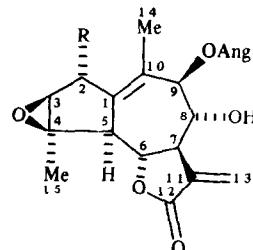
(Received 25 November 1987)

Key Word Index—*Baccharis salicina*; Asteraceae; sesquiterpene lactones; guianolides; centaureidin.

Abstract—Chemical analysis of *Baccharis salicina* afforded two new guianolides, bacchariolides A and B, and the known flavone centaureidin (1) [1]. Their structures were elucidated by spectroscopic methods.

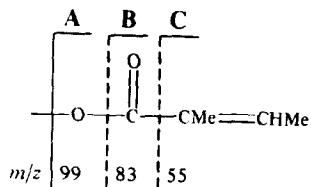

INTRODUCTION

In continuation of our search for biologically active sesquiterpene lactones, we have chemically analysed *Baccharis salicina* (Asteraceae) from Texas. Besides the antitumour-active flavone centaureidin (1) [1], two new guianolides, bacchariolide A (2) and B (3), were isolated and their structures elucidated by spectroscopic methods.


RESULTS AND DISCUSSION

Chromatographic fractionation of a crude extract of *B. salicina* yielded compounds 1–3. The structure of the known flavone centaureidin (1) was determined by comparison with spectroscopic data reported in the literature [2]. The mass spectral fragmentation was very similar to that of its isomer, jaceidin [3].

Bacchariolide A (2) is a gum, with a molecular ion at $m/z = 376$ which together with the ^1H and ^{13}C NMR data was in agreement with the molecular formula $\text{C}_{20}\text{H}_{24}\text{O}_7$. Additional MS peaks at $m/z = 276$ [$\text{M} - (\text{A} + 1)$] $^+$, $m/z = 83$ [$\text{B}]^+$, and $m/z = 55$ [$\text{C}]^+$ as well as ^1H NMR resonances at $\delta = 1.98, 2.04, 6.23$ and ^{13}C NMR peaks at $\delta = 15.9$ and 20.5 were diagnostic of an angelate moiety [5]. The ^1H COSY NMR spectrum of 2 showed two series of coupled protons: H-2 to H-3 and H-5 to H-9, with H-7 being coupled to a three-proton multiplet at $\delta = 6.23$ (H-13a, H-13b, H-3'), which exhibited heteronuclear correlation with olefinic carbons at $\delta = 122.7$ and 141.2 , indicating a 8α -hydroxy- α -methylene γ -lactone [6]. IR absorptions at 3460 cm^{-1} (hydroxyl), 1769 cm^{-1} (γ -lactone) and 1717 cm^{-1} (ester) as well as long-range couplings between the C-10 methyl at $\delta = 1.81$ and H-2 and H-5, provided by a COSY spectrum, suggested a highly substituted 12,6-lactonized guianolide. NOE difference spectroscopy indicated effects between H-5, H-7, and H-9; H-6 and H-8; C-10-Me and H-2 as well as C-4-Me and H-3. These observations together with coupling constants (Table 1) allowed the establishment of the stereochemistry at all chiral centres, supporting a stereostructure represented by 2. All ^1H and ^{13}C NMR resonance assignments given in Tables 1 and 2 were based on DEPT and 2D Homo- and Heteronuclear Correlation Spectroscopy [7, 8].



1

2 R = OH

3 R = H

Bacchariolide B (3) is a gum, which showed in the MS a molecular ion at $m/z = 360$. Additional MS peaks at $m/z = 83$ [$\text{B}]^+$, and $m/z = 55$ [$\text{C}]^+$ and ^1H NMR resonances at $\delta = 1.97, 2.02$ and 6.22 indicated an angelate moiety. The 400 MHz ^1H NMR spectrum was very similar to that of lactone 2 but the signal at $\delta = 4.72$ (H-2) in 2 was missing in lactone 3, suggesting the absence of a hydroxyl group at C-2 in 3. Instead, two one-proton absorptions at $\delta = 2.48$ and 2.75 with a large geminal coupling constant (17.7 Hz) for H-2 α and H-2 β were found. The ^1H NMR spectrum was as-

*Author to whom correspondence should be addressed.

Table 1. ^1H NMR spectral data*† of bacchariolides A (2) and B (3)

H	2	3
2 α		2.48 d
2 β	4.72 br s	2.75 br d
3	3.56 br s	3.40 br s
5	3.35 br d	3.18 br d
6	3.58 dd	3.62 dd
7	3.08 ddd	3.03 ddd
8	3.81 dd	3.78 ddd
9	5.35 d	5.40 d
13a	6.23	6.22
13b	6.23	6.22
14	1.81 br s	1.60 s
15	1.67 s	1.70 s
3'	6.23	6.22
4'	1.98 dq	1.97 dq
5'	2.04 dq	2.02 dq
8-OH	2.56 br d	2.41 d
2-OH	2.20 br s	—

* 400 MHz, CDCl_3 ambient temperature, TMS as internal standard.

† J (Hz): 2: 5, 6 = 10.8; 6, 7 = 7, 6 = 10.5; 7, 8 = 8, 7 = 10.0; 8, 9 = 9, 8 = 9.7; 5', 3' = 7.2; 4', 5' = 5', 4' = 1.5; 4', 3' = 1.5; 7, 13 = 3.0; 3: 5, 6 = 6, 5 = 10.7; 6, 7 = 7, 6 = 10.5; 7, 8 = 8, 7 = 10.2; 8, OH = 3.4; 8, 9 = 9, 8 = 9.8; 4', 3' = 1.4; 4', 5' = 5', 4' = 1.5; 5', 3' = 7.3; 2 α , 2 β = 17.7.

Table 2. ^{13}C NMR spectral data of centaureidin (1) and bacchariolide A (2)

C	1*	C	2†
1	—	1	136.9 s‡
2	157.4 s	2	72.6 s
3	137.6 s	3	66.0 d
4	178.2 s	4	65.5 s
5	152.3 s	5	51.1 d
6	131.1 s	6	77.5 d
7	155.3 s	7	55.9 d
8	93.9 d	8	69.3 d
9	151.5 s	9	76.7 d
10	104.6 s	10	136.3 s‡
11	59.9 q	11	138.0 s‡
12	59.7 q	12	168.6 s
13	55.6 q	13	122.7 t
1'	122.3 s	14	14.7 q
2'	114.9 d	15	18.8 q
3'	146.3 s	1'	166.6 s
4'	150.2 s	2'	126.5 s
5'	111.9 d	3'	141.2 d
6'	120.3 d	4'	20.5 q
		5'	15.9 q

* DMS- d_6 (298 K), 100.61 MHz; established by comparison with pectolin-arenin and quercetin 3,4'-dimethyl-ether [4].

† CDCl_3 .

‡ Interchangeable.

signed by comparison with the spectral data of 2 and on the basis of decoupling experiments. This led to the same stereochemistry as in compound 2 at all chiral centers of lactone 3.

EXPERIMENTAL

Baccharis salicina T. & G. was collected on 18 April 1981 along highway 357, 0.2 miles west of intersection with highway 286 near Corpus Christi, Texas (Malcolm-Vargas; voucher deposited at the Herbarium of Louisiana State University). The air-dried plant material (670 g) was extracted and worked-up as described in ref. [9], providing 3.6 of the crude terpenoid extract. Column chromatography of this crude in silica gel, first with CH_2Cl_2 , then with a gradient $\text{CH}_2\text{Cl}_2\text{-Me}_2\text{CO}$, and finally with Me_2CO provided 20 fractions of 300 ml each. Fraction 2 yielded centaureidin (1) (25 mg). Fraction 12 was purified by TLC on silica gel with CH_2Cl_2 affording 3 (2 mg). Fraction 14 was chromatographed by prep. TLC over silica gel using $\text{CH}_2\text{Cl}_2\text{-Me}_2\text{CO}$ (1:6) yielding 2 (12 mg).

Centaureidin (1), $\text{C}_{18}\text{H}_{16}\text{O}_8$, EIMS m/z (rel int): 360 [$\text{M}]^+$ (30.5), 345 [$\text{M}-\text{Me}]^+$ (18.2), 342 [$\text{M}-\text{H}_2\text{O}]^+$ (7.2), 327 [$\text{M}-\text{Me}-\text{H}_2\text{O}]^+$ (6.4), 317 [$\text{M}-\text{MeCO}]^+$ (27.8), 302 [$\text{M}-\text{MeCO}-\text{Me}]^+$ (7.9), 299 [$\text{M}-\text{MeCO}-\text{H}_2\text{O}]^+$ (22.1), 274 [$\text{M}-\text{MeCO}-\text{Me}-\text{CO}]^+$ (9.7), 259 (8.5), 246 [$\text{M}-\text{MeCO}-\text{Me}-2\text{CO}]^+$ (7.2), 151 (33.6), 135 (35.4), 123 (31.4), 108 (23.7), 95 (22.2), 77 (25.6), 69 (100.0). 400 MHz ^1H NMR: ($\text{CD}_3)_2\text{CO}$: H-8 δ 6.56 d, H-2' δ 7.65 d, H-5' δ 7.12 d, H-6' δ 7.68 dd, 2 OMe: δ 3.89 s (3H), δ 3.94 (3H).

Bacchariolide A (2), $\text{C}_{20}\text{H}_{24}\text{O}_7$, HRMS (FAB, probe) 70 eV m/z (rel int): 376.1313 [$\text{M}]^+$ (0.9), (calc. for $\text{C}_{20}\text{H}_{24}\text{O}_7$): 376.1622, 277.1965 [$\text{M}-\text{A}]^+$ (51.8), 259.1582 [$\text{M}-\text{A}-\text{H}_2\text{O}]^+$ (17.0). EIMS m/z (rel int): 376 [$\text{M}]^+$ (0.1), 276 [$\text{M}-(\text{A}+1)]^+$ (1.4), 258 [$\text{M}-(\text{A}+1)-\text{H}_2\text{O}]^+$, 83 [$\text{B}]^+$ (100), 55 [$\text{C}]^+$ (65.4). IR $\nu_{\text{max}}^{\text{neat}}$ cm^{-1} : 3460 (OH), 1769 (γ -lactone), 1717 (ester).

Bacchariolide B (3), $\text{C}_{20}\text{H}_{24}\text{O}_6$, EIMS m/z (rel int): 360 [$\text{M}]^+$ (0.2), 242 [$\text{M}-(\text{A}+1)-\text{H}_2\text{O}]^+$ (0.1), 214 [242- $\text{CO}]$ (0.7), 83 [$\text{B}]^+$ (100), 55 [$\text{C}]^+$ (44.7). IR $\nu_{\text{max}}^{\text{neat}}$ cm^{-1} : 3418 (OH), 1769 (γ -lactone), 1717 (ester).

Acknowledgements— The authors are grateful to the U.S.-Spain Joint Committee for Scientific and Technological Cooperation (Project No. CCB-8409023) for financial support. Purchase of 100 and 400 MHz NMR spectrometers was made possible by NIH shared Instrumentation Grant 1 S10RR02459-01. We thank Helga D. Fischer for technical assistance.

REFERENCES

1. Kupchan, S. M. and Bauerschmidt, E. (1971) *Phytochemistry* **10**, 664.
2. Bohlmann, F. and Zdero, C. (1967) *Tetrahedron Letters* **33**, 3239.
3. Bowie, J. H. and Cameron, D. W. (1966) *Aust. J. Chem.* **19**, 1627.
4. Harborne, J. B. and Mabry, T. J. (1982) *The Flavonoids: Advances in Research*, Chapman & Hall, London.
5. Budesinsky, M. and Saman, D. (1987) *Collect. Czech. Chem. Commun.* **52**, 453.
6. Yoshioka, H., Mabry, T. J., Irwin, M. A. and Geissman, T. A. (1971) *Tetrahedron* **27**, 3317.
7. Morris, G. A. (1986) *Magn. Reson. Chem.* **24**, 371.
8. Benn, R. and Günther, H. (1983) *Angew. Chem. Int. Ed. Eng.* **22**, 350.
9. Fischer, N. H., Wiley, R. A., Lin, H. N., Karimian, K. and Politz, S. M. (1975) *Phytochemistry* **14**, 2241.